

Resistance to Antibiotics and Heavy Metals of *Pseudomonas* Aeruginosa Isolated from Natural Waters

D. Susan Caroline

Department of Microbiology, C.S.I Ewart Women's Christian College, Melrosapuram, Kanchipuram, Tamil Nadu, India

ABSTRACT

Heavy metal resistance of *Pseudomonas aeruginosa* may be associated with plasmids which are also responsible for antibiotic resistance. The concentration of heavy metal pollutant in the environment is relatively high due to the toxic substance liberated from the industrial effluents. The high occurrence of antibiotic-resistant bacteria in natural water could be related to the widespread use of antibiotic, with possible public health hazard. The foremost aim of this present work is find out, resistance to antibiotics and heavy metals of *P.aeruginosa* isolated from natural water. **Keywords** : P. Aeruginosa, Heavy Metals, Antibiotics

I. INTRODUCTION

Microorganisms that are resistant to both antibiotics and heavy metals have been frequently isolated from different aquatic environments (30). The high occurrence of antibiotic-resistant bacteria in natural water could be related to the widespread use of antibiotics, with possible public health hazard (29). The detection of Pseudomonas aeruginosa in an aquatic natural environment is generally related to pollution come from sewage (10,16,19,22). An important characteristic of this microorganism is its high resistance to antibiotics, heavy metals and other environmental factors which can be related to its survival capability in aquatic environment (8,13,21,25). The presence of a large number of resistant bacteria in natural habitats can pose a public health risk (29). Pseudomonas aeurginosa is a classic opportunistic pathogen with innate resistance many antibiotics and disinfectants. It is to physiologically versatile and flourishes as a saprophyte in warm moist situations in the human environment, including sinks, drains, respirators humidifiers and disinfectant solutions. It causes urinary tract infection, respiratory system infection, dermatitis, soft tissue infction, bacteremia bone, gastro intestinal infection and immuno suppressed (5). The present investigation was, therefore to determine the isolation of antibiotic and heavy metal resistance bacteria Pseudomonas aeruginosa from natural water.

II. METHODS AND MATERIAL

Sample Collection

Water sample were collected from different sites in the Chennai area and the samples from different sources namely portable water, sewage water, sea water were collected for the analysis.

Processing

The collected samples were immediately transferred to the laboratory for investigation. Color and turbidity were observed.

Bacteriological Examination

Pseudomonas aeruginosa were determined using the membrane filtration technique on an yeast extract medium and incubated for 24h. All colonies were recovered on yeast extract agar and the strains were purified on tryptose soya agar. The colonies isolates were primarily identified on the basis of their colonial morphology, pigment production and on oxidase test. Conformation of identity was based on the standard biochemical methods (17,26).

Antibiotic Susceptibility

The susceptibility of *P.aeruginosa* isolates to various antibiotics was determined by the standard disc-agar

diffusion method on Mueller Hinton agar (18). The following antibiotic discs wew used Ampicillin (AM) 10µg, Amikacin (AK) 30µg, Streptomycin (S) 10µg, Tetracyclin (TE) 30µg, Carbinicillin (CB) 10µg, Gentamicin (GM) 10µg.

Examination of Heavy Metal Resistance

The resistance to heavy metals was evaluated by the agar dilution method (31). The strains of P.aeruginosa were assayed against the following concentrations of different metal salts Zinc sulphate $1600\mu g/ml$, Mercuric chloride $10\mu g/ml$, silver nitrate $128\mu g/ml$. Appropriate stock solutions of different metallic salts wew prepared in distilled water, sterilized by membrane filtration (0.47 μ m) and kept at 37°C for 24h.

III. RESULTS AND DISCUSSION

Resistance and sensitivity patterns of *Pseudomonas aeruginosa*:

Antimicrobial chemicals are also known as chemotherapeutic agents the sensitivity of micro-

organism to various chemotherapeutic agent varies antibiotic sensitivity test is performed on the basis of agar diffusion method and the results were tabulated. Table1 shows that, *P.aeruginosa* isolated from portable water, sea water and sewage water were resistant to ampicillin, tetracyclin and gentamycin. On the other hand P.aeruginosa were sensitive to amikacin and streptomycin. The given antimicrobial resistance patterns were similar to those reported by Al-Jebouri 1985. The wide soread use of antibiotics in medicine and other disciplines is accepted as a major factor for the increase in the incidence of antibiotic resistance especially among gram negative bacteria. Antibiotic resistant strains of P.aeruginosa causing diseases such as otitis, meningitis, urinary tract, ear and eye infections and skin rashes have been previously isolated from clinical materials by Shohayeb et al., 1999. The present study shows that, the coliform bacilli are generally considered to be indicators of the bacteriological quality of water supplies. The frequency of antibiotic resistance among coliform bacteria varied from sample to sample and this is probably dependent upon the source of contamination of the water.

Antibiotic disc	Zone of inhibition (mm)			Resistance / Sensitive			
	Strains of portable water	Strains of sea water	Strains of sewage water	Strains of portable water	Strains of sea water	Strains of sewage water	
Ampicillin	No-zone formation	No-zone formation	No-zone formation	R	R	R	
Amikacin	18mm	17mm	19mm	S	S	S	
Streptomycin	18mm	19mm	17mm	S	S	S	
Tetracyclin	No-zone formation	No-zone formation	No-zone formation	R	R	R	
Carbinicillin	No-zone formation	No-zone formation	No-zone formation	R	R	R	
Gentamicin	10mm	13mm	12mm	R	R	R	

Table 1. Antibiotic Sensitivity of Pseudomonas Aeruginosa

Heavy Metal Resistance

Table 2 shows that, *P.aeruginosa* strains to various concentrations of the three heavy metal ions were investigated, and the minimum inhibitory concentration is defined as the lowest concentration of metals which completely inhibits the growth of organisms. The present study reveals *P.aeruginosa* strains of portable water, sea water and sewage water were resistant to Hg, Zn and Ag. Which were similar to thr resistant obtained to those reported by Joly et al., 1976. The strains isolated from sea water shows the higher frequency of resistance which have been correlated with the report of De Vicente 1990, although they were lower than the frequencies observed for strains of P.aeruginosa isolated from different sources (8,30,31). The resistance to a particular heavy metal has already been reported to correlate with antibiotics and other heavy metals resistance in certain organisms (7,29,30) and the role of plasmids in conferring resistance to antibiotics and metals has also previously demonstrated (20,30,31). The study of heavy metals sensitivity shows that every strain in resistant to most of the heavy metal to some limit.pressure from heavy metal salts naturally present in water may favour persistance of metls - resistant bacteria and on different microbes and pressure of micro environment and the microbes contain transferable factor in certain micro environments may provide conditions where resistance transferred could occur.

Heavy metal	Concentra tion of heavy metal	Minin inhibi conce		Resista nce / Sensitiv ity		
Ag	64	Clea	Clea	Clea		
128µg/	32	r	r	r		
ml	16	Clea	Clea	Clea	Resistan	
	8	r	r	r	t	
	4	Clea	Clea	Clea		
		r	r	r		
		Turb	Turb	Turb		
		id	id	id		
		Turb	Turb	Turb		
		id	id	id		
Hg	5.0	Clea	Clea	Clea		1
10µg/m	2.5	r	r	r		

1	1.2	Turb	Turb	Turb	Resistan
	0.6	id	id	id	t
	0.3	Turb	Turb	Turb	
		id	id	id	
		Turb	Turb	Turb	
		id	id	id	
		Turb	Turb	Turb	
		id	id	id	
Zn	800	Clea	Clea	Clea	
1600µg/	400	r	r	r	
ml	200	Clea	Clea	Clea	Resistan
	100	r	r	r	t
	50	Clea	Turb	Turb	
		r	id	id	
		Clea	Turb	Turb	
		r	id	id	
		Turb	Turb	Turb	
		id	id	id	

IV. CONCLUSION

From the results, it is clear that *P.aeruginosa* is highly resistance to antibiotics amd heavy metals. So, it is very difficult to eliminate the organisms from the environment. Proper sanitation measure can full fill avoiding *P.aeruginosa* to some extent. The results reported in this paper provide evidence that polluted water may play important role as reservoirs of antibiotic and heavy metal resistance and enhanced as a potential public health hazard.

V. REFERENCES

- Al Jebouri M.M 1985. A note on antibioticresistance in the bacteria flora of raw sewage and sewage – polluted River Tigris in Mosul, Iraq. Appl.Bacteriol. 58: 401 – 405.
- [2]. Armstrong J.L et al., 1982. Selection of antibiotic resistant standad plate count bacteria during water treatment. Appl.Environ.Microbiol. 44: 308 – 316.
- [3]. Austin D.A and Colwell R.R. 1977. Antibiotic patterns of metal tolerant bacteria isolated from an estuary. Antimicrob. Agents Chemoth. 12: 545-547.
- [4]. Baldi F.M and G.J. Olson. 1989. Biotransformation of mercury by bacteria isolated from a river collecting cinnabar mine waters. Microbiol Ecol. 17: 263-274.

- [5]. Bastawrows A.F.1997. Ocurrence and significance of Pseudomonas aeruginosa in some metal products. Assiut Vet. Med. 37: 86-100.
- [6]. Bonde G.J 1977. Bacterial indication of water polution. Pp. 273-364, In: M.Droop and H.W.Jannasch eds., Advances in Aquatic Microbiology, vol.1. academic press. Inc.Ltd London,U.K.
- [7]. Brooks G.F. et al., 1995 pp: 218-221. Medical. Microbiolgy 20th Ed. Prentice hall international inc London, U.K.
- [8]. Bryan L.E 1979. Resistence to antimicrobial agents: The general nature of the problem and the basis of resistence pp: 219-270.
- [9]. Burton N.F and Bull A.T 1982. Distribution of bacteria plasmids in clean and polluted sites in a south wales river. Appl. Environ. Microbiol. 44: 1026-1029.
- [10]. De Vicente A and P.Romero 1986. Comparative study of selective media for enumeration of Pseudomonas aeruginosa from water by membrane filtration. Appl. Environ. Microbiol. 51: 832-840.
- [11]. Dutka B.J and K.K.Kwan 1977. Confirmation of the single-step membrane filtration procedure for estimating of pseudomonas aeruginosa densities inwater. Appl. Environment. Microbiol. 33: 240-245.
- [12]. Finegold S,M and W.J.Martin 1982. Pp: 542-550.
 Standardized disc-agar diffusion method for determining susceptibility to antibiotics. In: Diagnotic microbiology. CV Mosby Co. London, U.K.
- [13]. Foster T.J 1983. Plasmid determined resistence to antimicrobial drugs and toxic metal ions in bacteria. Microbiol. Research 47: 361-409.
- [14]. Hassen N and A,Boudabous. 1998. Resistence of environmental bacteria to heavy metals. Biores. Technol. 64: 7-15.
- [15]. Hwang S.C and T.K.Liu 1992. Succession of bacterial application in aquaculture. J.Fish. soc. Taiwan 9: 55-64.
- [16]. Kelley T.R et al., 1998. Antibiotic resistance of bacterial litter isolates. Poul. Sci. 77: 243-247.
- [17]. Koneman E.W and W,C,Winn Jr. 1992.pp. 185-242. The Non-Fermentative Gram-Negative Bacilli, 4th ed. J.B.Lippincott Co., Philadelphia, U.S.A.

- [18]. Luli G.W and R.M.Pfister 1984. Hexavalentchromium resistent bacteria isolated from river sediments. Appl. Environ. Microbiol. 46: 846-854.
- [19]. Lyon B.R and R.Skurray 1987. Antimicrobial resistence of Staphylococcus aureus. Genetic. Basis. Microbiol. Rev. 51: 88-134.
- [20]. Marques A,M and D.M. Simon-Pujol. 1979. Antibiotic and heavy metal resistence of Pseudomonas aeruginosa isolated from soils. Appl. Bacteriol. 47: 347-350.
- [21]. Nakahara H., T.Ishikawa and I.Kondo. 1977. Frequency of heavy metals resistance in bacteria from patients in Japan. Nature 266: 165-167.
- [22]. Niles D 1992. Resistence to cadmium, cobalt, zinc and nickel inmicrobes. Plasmid 27: 17-28.
- [23]. Qureshi A.R 1992. Multiple antibiotic resistent faecal coliform in raw sewage. Water, air, soil pollution 61: 47-56.
- [24]. Sabry S.A and D.M. Abou-zeid. 1997. Metal tolerance and antibiotic resistence patterns of a bacterial population isolated from sea water. Appl.Microbiol. 82: 245-252.
- [25]. Shaw D.R and V.J.Cabelli 1980. Plasmid transfers frequencies from environmental isolates of E.coli to laboratory and faecal strains. Appl.environ. microbiol. 40: 756-764.
- [26]. Shawar R.M 1999. Activities of tobramycin and six antibiotics against pseudomonas aeruginosa from patients with cystic fibrosis. Antimicrob. Agents Chemother. 43: 2877-2880.
- [27]. Shohayeb M., F.Donbol and T.El-Banna. 1996. Mechanism of lactam resistence amongst Pseudomonas aeruginosa. A.J.Microbio. 34: 1-10.
- [28]. Sundin G.W and C.L.Blender 1993. Ecological and genetic analysis of copper and streptomycin resistence in Pseudomonas syringe Pv. Syrinage. Appl. Environ. Microbiol. 59: 1018-1024.
- [29]. Tebbutt T.H 1983. Principles of water quality control. 3rd ed. Oxford Pergamon press, U.K.
- [30]. Vasil M. 1998. Antibiotic resistence with bacterial causative agents isolated from dairy cow mastitis. Veter. Med. 43: 201-205.
- [31]. Washington J.A and V.L.Sutter 1981. Dilution tests procedures, pp. 549-555. In Lennette, E.H., and Truant.J.P eds., Manual of clinical Microbiology Washington D.C. American society for Microbiology, U.S.A.